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ARTICLE INFO ABSTRACT

Keywords: Understanding and tracking how ecosystems respond to changing environments is an ongoing challenge. Marine
Gulf of Alaska ecosystems in the North Pacific support productive fisheries and diverse ecosystem services, and they are subject
Ichthyoplankton to large-scale environmental, human, and ecological perturbations. Ichthyoplankton time-series from these
Biodiversity ecosystems may provide an important indicator of lower trophic level dynamics and ecosystem functioning. Here
ﬁsr\)lf:]j:;:]gollock we present a spatiotemporal analysis using data from three decades of ichthyoplankton surveys in the Gulf of
Climate Alaska to investigate temporal patterns in indicators of species richness, Shannon diversity, and synchrony. Then

we use Dynamic Factor Analysis (DFA) to synthesize the ichthyoplankton assemblage with two dominant trends.
We relate the biodiversity indices and DFA trends to local and regional climate indices in the North Pacific. We
find evidence for increased temperatures driving increased species richness, and changes in synchrony coin-
cident with shifting assemblage composition and the 1988/1989 regime shift. Shannon diversity was largely
driven by the dominance of larval walleye pollock (Gadus chalcogrammus). Correlations between climate drivers
and DFA trends suggest that the influence of basin scale drivers (North Pacific Gyre Oscillation and the Pacific
Decadal Oscillation) were stronger than the influence of local-scale drivers like regional sea surface temperature.
Our work demonstrates the potential value of ichthyoplankton surveys to provide indicators of climate-driven
ecosystem variability and long-term ecological change.

Ecosystem indicators

reduce the dimensionality is to focus on ecological indicators that can
track shifts in community structure or the physical environment (Coll

1. Introduction

Understanding how species, communities, and ecosystems respond
to changing environments and how to track those responses remains a
fundamental challenge. In marine ecosystems, for example, changes in
fishing, climate, and oceanographic conditions can have a range of
biological consequences from no effect to strong cascading effects that
propagate through a food web (Hunt et al., 2011). A key part of this
challenge is the complexity of biophysical systems, and one way to
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et al., 2016). For example, indicators of biodiversity are commonly
proposed because they integrate across biotic scales, rely on data de-
rived from multiple species, and can represent shifts in the status of
groups of species, community vulnerabilities, species loss, the adaptive
capacities of species and ecosystems, and ecosystem complexity and
stability (Coll et al., 2016; Kershner et al., 2011; Longo et al., 2015).
While biodiversity metrics provide insight on the status of an
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assemblage or community at a point in time, synchrony metrics de-
scribe how population abundances or biomasses fluctuate through time
with respect to each other (Micheli et al., 1999). Synchrony can reflect
the extent to which the response to a stochastic, exogenous forcing
factor is coincident among species, or it can represent the intensity,
strength, and coherence of trophic interactions (Liebhold et al., 2004).
Large-scale forcing events have been shown to increase synchrony with
coincident changes observed across species (Cottingham et al., 2001;
Keitt, 2008; Tilman, 1996; Vasseur and Gaedke, 2007), potentially
destabilizing systems by unifying community response. The con-
sequences of a perturbation can be ephemeral, temporarily driving the
community out of a stable configuration, or enduring, forcing the
system into a new stable state. Previous research has shown that effects
of small-scale forcing events may be temporary (Duffy-Anderson et al.,
2006; Frost et al., 2006; Mittelbach et al., 2006), while large-scale
events can have effects that persist over several decades (Beaugrand
et al., 2002; Scheffer et al., 2001; Walsh et al., 2015; Walther et al.,
2002).

One of the largest marine ecosystems in the world where the in-
teractions between climate forcing, species interactions, and ecosystem
resilience have been studied extensively is the Gulf of Alaska (GOA). As
a high-latitude system, the GOA is susceptible to climate-mediated
environmental variation and rapid changes in population and commu-
nity structure. Extensive sampling of the marine environment has oc-
curred since the early 1980s, providing important time series that can
be used to evaluate effects of decadal-scale regime shifts. The most well-
known shift occurred in 1976/1977 characterized by a phase shift of
the Pacific Decadal Oscillation (PDO), the first mode of variability in
sea surface temperature in the North Pacific Ocean, from a negative to
positive value (Mantua and Hare, 2002). This shift was accompanied by
an intensified Aleutian Low (AL) pressure system, ocean warming, in-
creased circulation, and increased stratification that persisted for over
two decades. A second regime shift occurred in 1988/1989, driven by a
strong polar vortex and weak AL (Overland et al., 1999; Yasunaka and
Hanawa, 2002) that lowered ocean temperatures and weakened overall
circulation. Unlike the well-characterized PDO-driven regime shift of
1976/1977, the 1988/1989 shift was not described by PDO variability.
Instead, a shift in the North Pacific Gyre Oscillation (NPGO), which
describes the second mode of variability of SST and relates to the gyre
circulation and chemical and biological properties in GOA, character-
ized this regime (Bond et al., 2003; Di Lorenzo et al., 2008; Kilduff
et al., 2015). This second shift raised awareness of the complex and
dynamic relationships between the major (physical) atmospheric and
oceanographic forcing variables, beyond the PDO. A third regime shift
in 2007/2008 was less well described but is potentially important. A
recent comprehensive examination by Litzow and Mueter (2014) de-
scribed the 2007/2008 shift as a transition to a PDO-negative, NPGO-
positive state, featuring lower ocean temperatures and changing cir-
culation.

Other large-scale climate drivers may also correlate with variability
in the GOA. The Multivariate El Nifio/Southern Oscillation Index (MEI)
combines sea level pressure, winds, sea surface temperature, air tem-
peratures, and cloudiness across the tropical Pacific (Wolter and Timlin,
1998, 1993). The North Pacific Index (NPI) describes sea level pressure
over the area 30N-65N, 160E-140W (Trenberth and Hurrell, 1994). The
GOA is typically a downwelling system and the relaxation of that
downwelling relates to Ekman transport driven by wind stress, which
could affect cross-shelf transport.

In addition to being a system that has experienced several large-
scale climate shifts, the GOA has also been the focus of long-term
monitoring programs across multiple trophic levels in the marine en-
vironment. A number of these datasets have been used to examine fish
community response to the climate-mediated perturbations described
above, including regime shifts (Anderson and Piatt, 1999; Litzow, 2006;
Mueter and Norcross, 2002, 2000; Shelton et al., 2017). Though less
studied (but see Boeing and Duffy-Anderson, 2008; Doyle et al., 2009),
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high resolution datasets of fish early life-history stages may be useful
for understanding climate-mediated impacts on fisheries. In particular,
early life-history stages of fishes have informed studies on the effects of
non-native species (Manchester and Bullock, 2000), stock reductions
(Hoff, 2006; Hutchings and Baum, 2005), spatial shifts (Perry, 2005),
and restructured trophic interactions (Worm et al., 2006). One of the
most data rich surveys that has spanned multiple climate shifts in the
GOA is run by the Ecosystems and Fisheries Oceanography Coordinated
Investigations (EcoFOCI) program, which has been collecting marine
fish larvae from the western GOA since the 1970s, and systematically
over a gridded survey since the early 1980s (McClatchie et al., 2014).
These surveys are fishery independent, may provide early indicators of
future changes in the adult fish community, and may describe changes
in adult species composition, species interactions, spawning distribu-
tion, and phenology. As such, they are useful indicators of bottom-up
forcing on overall fish communities.

In this paper, we usethree decades of ichthyoplankton data collected
from the western GOA to examine temporal variability in the structure
of the spring ichthyoplankton assemblage with respect to large-scale
climate regimes. Our objectives were threefold: (1) explore temporal
trends in larval fish assemblage structure, biodiversity, synchrony, and
pollock dominance; (2) describe temporal trends shared among mul-
tiple species in the assemblage; and (3) explore potential physical and
biological drivers of patterns in shared trends and diversity indices. We
use the term “larval assemblage” to refer to co-occurring species, and
the term “larval community” to refer to groups of larvae that may in-
teract directly or indirectly through shared prey resources.

2. Methods
2.1. Ichthyoplankton sampling

Ichthyoplankton data were collected in May and June from the
western GOA by the EcoFOCI from 1972 to 2013 (Table 1; McClatchie
et al., 2014). These surveys were conducted annually, with the excep-
tion of years 1984, 1986, and 2012. The historical distribution of ich-
thyoplankton sampling extends along the Alaskan mainland and Pe-
ninsula on the continental shelf from Prince William Sound southwest
to Unimak Island (Fig. 1). The most intense sampling has been in the
vicinity of Shelikof Strait and Shelikof Sea Valley from mid-May
through early June. Ichthyoplankton were collected from oblique tows
from the bottom (or 100 m depth maximum) to the surface with a 60 cm
diameter bongo net (333 or 505 mm mesh) in a standardized manner
(Matarese et al., 2003). Data from both bongo net mesh sizes were
combined as prior analyses indicated no significant differences in ich-
thyoplankton catch rates (selected species) between the two mesh sizes
(333 um and 505 um; Boeing and Duffy-Anderson, 2008). Calibrated
flowmeters in the net mouth were used to estimate the volume of water
filtered. Samples were preserved in 5% formalin at sea and returned to
the laboratory for sorting. All ichthyoplankton were sorted at the
Plankton Sorting and Identification Center in Szczecin, Poland. Species
were enumerated, identified to the lowest taxonomic level possible, and
measured. Fish larvae from sorted samples were returned to the Na-
tional Oceanic and Atmospheric Administration’s Alaska Fisheries Sci-
ence Center (AFSC), taxonomic identifications were verified, and all
data were archived in a relational database housed at the AFSC (also
available online from the Ichthyoplankton Information System http://
access.afsc.noaa.gov/ichthyo/index.cfm).

2.2. Environmental and biological indices

We used large-scale climate indices and spatially targeted de-
scriptors of the physical environment in our study region to investigate
the influence of environmental indices on ichthyoplankton (Table 1).
We calculated a local temperature index from satellite monthly mean
temperatures within the study area. We also calculated a local sea level
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Table 1
Environmental and biological variables investigated to explain temporal variation in ichthyoplankton assemblage.

Index Description Source Reference

PDO Pacific Decadal Oscillation: Average of monthly http://jisao.washington.edu/pdo/PDO.latest Mantua et al.
anomalies from Jan thru June 1981-2013 (1997)

NPGO North Pacific Gyre Oscillation: Average of monthly http://www.o3d.org/npgo/npgo.php Di Lorenzo et al.
anomalies from Jan thru June 1981-2013 (2008)

MEI Multivariate ENSO Index: Average of bimonthly http://www.esrl.noaa.gov/psd/enso/mei/table html Wolter and Timlin
values from Jan thru June 1981-2013 (1998, 1993)

NPI North Pacific Index: Average of bimonthly values https://climatedataguide.ucar.edu/sites/default/files/climate index files/npindex_ Trenberth and
from Jan thru June 1981-2013 monthly.ascii Hurrell (1994)

SST Sea Surface Temperature: average of monthly means  http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html Reynolds et al.
from Jan thru June 1982-2013, subsetted to 90% (2002)
quantiles of lat-long of ichthyoplankton data

Upwelling  Upwelling index: average of monthly anomalies from  http://www.pfeg.noaa.gov/products/PFELData/upwell/monthly/upanoms.mon
Jan thru June 1981-2013, from station at 60°N 149°W

MSL Mean Sea Level: average of monthly mean water level  https://tidesandcurrents.noaa.gov/inventory.html?id = 9455500
from Jan thru June 1981-2013, from Seldovia, AK
(9455500)

POLL Pollock spawning stock biomass, 1981-2013 Dorn et al. (2015)

PCOD Pacific cod spawning stock biomass, 1981-2013 A’Mar and Palsson

(2015)

ARR Arrowtooth flounder spawning stock biomass, Spies and Turnock

1981-2013 (2015)

index from tide gauge data from the closest station to the study area
that had complete data over the study years (Seldovia). In all cases, we
used data from the first half of the year (Jan-June) to represent the
period during which most species spawned and ichthyoplankton were
collected.

The presence and abundance of early life stages may reflect the
status or abundance of adult life stages during spawning (Koslow and
Wright, 2016). To account for this, we used spawning stock biomasses
(SSB) of three of the most abundant species, pollock, Pacific cod (Gadus
macrocephalus), and arrowtooth flounder (Atheresthes stomias), from the
2015 GOA stock assessments to represent these potential biological
drivers (A’Mar and Palsson, 2015; Dorn et al., 2015; Spies and Turnock,
2015). We lagged SSB by one year such that SSB was a predictor for the
following spring’s ichthyoplankton data.

2.3. Ichthyoplankton index standardization

We applied spatiotemporal index standardization methods to ac-
count for spatiotemporal variability in sampling effort and auto-
correlation. Though these methods are increasingly used in fisheries
(Shelton et al., 2014; Thorson et al., 2015), to our knowledge this is the
first time they have been applied to larval fish data or sampling of
smaller organisms. These methods extend generalized linear mixed
models to include spatial random effects, and have been shown to
substantially reduce bias and uncertainty compared to traditional
strata-based estimators (Thorson et al., 2015). Because ichthyoplankton
densities are commonly zero-inflated, we applied models in a delta-
generalized linear model (GLM) framework, fitting one statistical model
to presence-absence data to describe variability in occurrence, and a
second model to density data to describe variability in positive catch
rates (Maunder and Punt, 2004; Pennington, 1983). Estimation was
conducted separately for each species as latent Gaussian Markov
random fields in the R package INLA (Rue et al., 2009; Ruiz-Cardenas
et al., 2012). Following previous work with Gaussian processes models
and marine organisms, we modeled the spatial correlation between
locations with a Matérn covariance function (Ono, 2014; Ward et al.,
2015).

We focused our modeling efforts on the most abundant 40 species in
the ichthyoplankton surveys (1981-2013), representing 90% of occur-
rences in the dataset (Table 2). Preliminary analyses showed that in-
cluding additional species beyond the top 40 resulted in poor con-
vergence of the standardization method, and therefore we chose 40
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species as a cut-off. In some cases, species were aggregated to the genus
level due to interannual variation in taxonomic resolution or to include
taxa that would have otherwise been dropped due to lower species-
specific occurrences. Spatially, surveys are most often concentrated in
Shelikof Strait and Shelikof Sea Valley, though more recent efforts have
expanded the sampling to the north or east sides of Kodiak Island
(Fig. 1). To reduce the influence of infrequently sampled locations, we
restricted samples to the core sampling area, defined as those
20 x 20km grids contained within the 90% quantiles of all grids
sampled.

We conducted Markov chain Monte Carlo sampling from the ap-
proximate posterior distribution of each delta-GLM model, and used the
resulting estimates of occurrence and positive catch rates to generate
estimates of density. We projected these estimates to the centroid of an
equally spaced 2-km grid within the core survey area, and summed the
estimates across grid cells to generate an annual index of abundance.
Repeating this process across posterior samples allowed us to compute
posterior credible intervals for the density of each species in each year.
For subsequent analyses, we used the means of the posterior densities of
abundance for each species in each year. Code and data to replicate the
analysis is available at https://github.com/NCEAS/pfx-ichthyo.

2.4. Describing temporal trends in species diversity

We estimated annual species richness and Shannon diversity indices
from the standardized time series of ichthyoplankton abundances.
Species richness was calculated from the presence-absence model
output as the sum of probabilities (p;) of presence of each species i in
each year y across s species: R, = 2:21 p;,- Shannon diversity represents
the evenness of species present. We chose the Shannon index over other
diversity metrics because it is least sensitive to dominant species (Jost,
2006) and pollock is dominant in our data (Fig. 2). We calculated the
Shannon index from the standardized indices of abundance:
Hy= =3 ayloga.

2.5. Describing temporal trends in synchrony among species

Synchrony describes the similarity or dissimilarity of a group of
species fluctuations through time. Like diversity, many metrics of syn-
chrony exist, each with strengths and weaknesses. Gross et al. (2014)
recently proposed a synchrony metric based on correlations, which they
showed to be less sensitive to dominant species than other metrics
based on variances or coefficient of variations (CVs). Gross’s metric
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Fig. 1. Map of historical ichthyoplankton sampling for EcoFOCI using plankton nets in the Gulf of Alaska (1972-2013). Points show all sampled locations over all
years. Purple (dark gray in print version) points were those locations included in the present analyses, representing the 90 percent quantiles of the tow locations.

represents the correlation between the biomass of each species and the
total biomass of all the other species, averaged across species:
n= (%) > cor(Y;, Z}.# Y;) where Y; is the biomass of species i in s
species. This metric varies between —1 (maximum asynchrony) and 1
(perfect synchrony), and is centered on 0 when species fluctuate in-
dependently.

We calculated a time series of synchrony using a moving window
approach over 11-year intervals such that the value of synchrony in
1991 represents the period over the previous 11 years (1981-1991).
We investigated the sensitivity of synchrony to each contributing spe-
cies in the assemblage by jackknifing each species out of the analysis
one at a time and re-calculating the synchrony metric.

2.6. Describing shared temporal trends among ichthyoplankton species

We used Dynamic Factor Analysis (DFA) to describe the dominant
patterns or trends in the standardized ichthyoplankton data. DFA is a
multivariate approach for time series data (Zuur et al., 2003). Similar to
a principal components analysis, DFA decomposes multivariate data
into a smaller number of components that describe the dominant pat-
terns in the data. In DFA, the shared trends and loadings of each species
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on each trend are estimated. We performed the DFA using the MARSS
package in R (Holmes et al., 2014, p. 201) on the standardized ich-
thyoplankton time-series after rescaling each species by subtracting its
mean and dividing by its standard deviation across all years. AICc was
used to determine the most parsimonious model. We considered DFA
models with 1-4 trends, and diagonal covariance matrices with either
equal or unequal elements. Missing values from years without surveys
were treated as NAs. Rotated trends and loadings were calculated using
a varimax rotation (Zuur et al., 2003). We describe the proportion of
variation explained by the best-fit DFA model using the residuals from
the model prediction and means of the standardized indices such that:

@ ) Z (Yi‘]ercd _ Yi})bs 2
=41- = ob: bs\2

3 (75 - veP)

where Kf”d is the prediction for each species in each year from the DFA

model and Yé-’bs is the mean of the posterior of the standardized index
for species i in year j.
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Table 2

Top 40 most commonly occurring species collected from ichthyoplankton
sampling 1981-2013. Percent occurrence calculated as number of tows in
which each species was observed over all records and all years.

Family Species Name Common Name Percent
Positive
Tows
Clupeidae Clupea pallasi Pacific herring 0.468
Bathylagidae Leuroglossus schmidti Northern 0.844
smoothtongue
Bathylagus pacificus Slender 0.353
blacksmelt
Osmeridae Mallotus villosus capelin 0.293
Myctophidae Protomyctophum Northern 0.412
thompsoni flashlight fish
Stenobrachius Northern lampfish ~ 4.656
leucopsarus
Gadidae Gadus macrocephalus Pacific cod 6.477
Gadus chalcogrammus Walleye pollock 11.216
Scorpaenidae Sebastes spp. Rockfishes 4.881
Hexagrammidae Ophiodon elongatus Ling cod 0.35
Hexagrammos spp. Greenlings 1.266
Cottidae Ieelinus spp. Sculpins 4.36
Myoxocephalus spp. Sculpins 0.584
Radulinus spp. Sculpins 1.187
Ruscarius meanyi Puget Sound 0.656
sculpin
Triglops spp. Scuplins 0.178
Agonidae Bathyagonus alascanus Gray starsnout 2.833
Bathyagonus Spinycheek 0.534
infraspinatus starsnout
Podothecus Sturgeon poacher 0.185
acipenserinus
Liparidae Liparis fucensis Slipskin snailfish 1.049
Bathymasteridae Bathymaster spp. Ronquils 8.577
Stichaeidae Lumpenella longirostris Longsnout 0.554
prickleback
Lumpenus maculatus Daubed shanny 1.273
Lumpenus sagitta Snake prickleback 0.162
Poroclinus rothrocki Whitebarred 1.721
prickleback
Anoplarchus spp. Cockscombs 2.404
Cryptacanthodidae  Cryptacanthodes Dwarf wrymouth 2.058
aleutensis
Pholididae Pholis spp. Gunnels 3.034
Zaproridae Zaprora silenus Prowfish 0.765
Ammodytidae Ammodytes personatus Pacific sandlance 9.468
Pleuronectidae Atheresthes stomias Arrowtooth 2.572
flounder
Glyptocephalus zachirus ~ Rex sole 1.19
Hippoglossoides Flathead sole 10.094
elassodon
Hippoglossus stenolepis Pacific halibut 1.342
Isopsetta isolepis Butter sole 0.861
Lepidopsetta bilineata Southern rock sole  3.453
Lepidopsetta polyxystra Northern rock sole  4.762
Microstomus pacificus Dover sole 0.854
Platichthys stellatus Starry flounder 2.49
Pleuronectes Alaska plaice 0.772
quadrituberculatus

2.7. Describing structure in the ichthyoplankton assemblage

We used hierarchical cluster analysis to group species based on their
loading values on Trend 1 and Trend 2. We determined an optimal
number of clusters to represent the 40 species using the elbow method
and gap statistic (Tibshirani et al., 2001). We then explored how clus-
ters and trends associated with a suite of documented life history traits.
We focused on traits that previous studies identified as potentially
important in characterizing the GOA spring ichthyoplankton assem-
blage (Doyle et al., 2002). In particular, we characterized adult habitat,
spawn timing, larval duration, and species distribution (Table 3).
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2.8. Exploring potential physical and biological drivers of biodiversity and
shared trends

Given the documented climate regime shifts in the GOA, we used
moving window cross correlation analysis to explore if and how cor-
relations between ichthyoplankton diversity metrics and trends and
environmental indices varied over time. There are many examples of
nonstationary interactions between environmental/biological indices
and fish populations in Alaska ecosystems (Ciannelli et al., 2012; Duffy-
Anderson et al., 2005; Litzow and Ciannelli, 2007) and other ecosys-
tems as well (Deyle et al., 2013; Myers, 1998; Ottersen et al., 2013;
Stige et al., 2013). Often, fish populations seemingly respond to certain
dominant variables for a period of time, and then the dominant vari-
ables shift. This can be caused by changes in the magnitude of en-
vironmental variables, indirect or interacting effects, and shifts in
ecosystem state (e.g., Stige et al., 2013; Sugihara et al., 2012). Here, we
used a moving window cross-correlation analysis, combining output of
the DFA model with potential environmental drivers. We calculated
Pearson correlation coefficients between each environmental driver and
the two DFA trends and two diversity indices over an 11-year moving
window. Ninety percent confidence intervals were calculated using the
Pyper-Peterman correction for autocorrelated data (Pyper and
Peterman, 1998). We investigated different lengths of moving windows
and found the results to be generally robust to window length.

3. Results
3.1. Temporal trends in diversity and synchrony

The diversity and synchrony indices from 1981 to 2013 illustrated
shifts in the probability of occurrence and abundance of species (Fig. 2).
They also highlight the variable role of pollock in structuring the ich-
thyoplankton community. Species richness gradually increased over
three decades (Fig. 2, upper panel), driven by increased probabilities of
occurrence of warm water associated species in the GOA in later years
(Lepidopsetta polyxystra, Ophiodon elongatus, Platichthys stellatus, and
Sebastes spp., a complex which is primarily comprised of Pacific ocean
perch, Sebastes alutus, in spring collections, Appendix A). The Shannon
diversity index exhibited strong negative correlation with the propor-
tion of larval pollock observed in the survey (Fig. 2, middle panel).
Shannon diversity increased during the 1980s, but dropped between
1988 and 1989, coincident with the 1988/1989 regime shift in the
GOA. Shannon diversity was relatively low during the 1990s (except for
1994 when pollock abundance was low). Higher diversity occurred
between 1998 and 2005 (except 2000 when pollock abundance was
high), but then declined, with a minimum observed in 2013 (when
pollock abundance was very high).

The time series of synchrony also shows evidence of abrupt shifts,
and reflects the dominant role of pollock in the ichthyoplankton as-
semblage, particularly in the early years of these data. Pollock clearly
drives the overall synchrony index through the early 1990s (difference
between blue and gray lines, Fig. 2, lower panel). Removing the effect
of pollock, the other ichthyoplankton species were independent to
weakly asynchronous during this period (blue line, synchrony values of
0 to —0.2). Synchrony shifted to positive values in the mid-1990s, in
metrics with and without pollock, indicating that pollock and rest of the
assemblage fluctuated in similar ways from the 1990s to 2013. This
positive shift in synchrony coincided with the 1988/1989 regime shift
in the GOA, reduced dominance of pollock in the samples, and higher
Shannon diversity. Synchrony over 2003-2013 dropped as numbers of
pollock larvae in the assemblage increased dramatically in 2013.

3.2. Constructing shared temporal trends among ichthyoplankton species

We fit 8 potential DFA models to describe shared trends among
ichthyoplankton, and model selection with AIC: revealed the best
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Fig. 2. Ichthyoplankton assemblage
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model was a two-trend model with an equal variance-covariance matrix
(Appendix C). The model with the next lowest AIC; value was nearly 20
units higher, thus we did not consider any other candidate models. The
best fit model explained 28 percent of the total variation.

The best-fit model had two shared trends that described the dy-
namics of the ichthyoplankton assemblage over 1981-2013 (Fig. 3).
Trend 1 showed moderate-to- low amplitude until the mid-1990 s (most
values between 0 and —1 SD of the mean). From 1996 to 2010 Trend 1
was generally positive, with a peak in 2001. But, two years in the 2000s
(2007-2008) were very low (—2 SD below the mean). The most recent
years of Trend 1 were close to the mean. Trend 2 declined from a peak
(+3SD) in 1981 to its lowest value in 1996 (— 3 SD). By 2000, Trend 2
increased to the mean and has exhibited multi-year fluctuations
through 2013, with low values in 2006 and 2007.

2005
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2010

3.3. Describing structure in the ichthyoplankton assemblage

The cluster analysis of species loadings on the trends revealed four
groups that characterized ichthyoplankton assemblage structure (Fig. 4,
Table 3). Cluster 1 contained species loading negatively on Trend 2 that
increased over the 1980s and 1990s (11 species, Fig. 4). Many of these
species, but not all, occupy waters over the slope as adults and spawn in
winter (Table 3). Species loading strongly positive on Trend 2 and weak
to positive on Trend 1 formed another cluster (Cluster 2), which also
included species that did not load strongly on either trend. Some of
these species experienced substantial declines in biomass in the 1980s
and 1990s (Bathymaster spp. and Lumpenella longirostris). The species in
Cluster 2 did not appear to share life history traits (Table 3). The third
cluster included species loading positively on Trend 1 and weakly on
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Table 3
Life history traits of ichthyoplankton assemblage and clusters identified from cluster analysis.
Species Abbv Adult Habitat Adult bathymetric Spawn timing Egg Ecology Larval duration (months) Range Cluster
Anoplarchus spp. An.sp Benthic Nearshore Spring Demersal 3 Northern 1
Icelinus spp. Ic.sp Benthic Nearshore Spring Demersal NA Northern 1
Platichthys stellatus Plst Benthic Slope Late spring Pelagic 2 Southern 1
Stenobrachius leucopsarus St.le Pelagic Slope Spring Pelagic 8 Both 1
Atheresthes stomias At.st Benthic Slope Winter Pelagic 5 Both 1
Microstomus pacificus Mi.pa Benthic Slope Spring Pelagic 8 Southern 1
Bathyagonus alascanus Ba.al Benthic Shelf Spring Demersal 3 Both 1
Leuroglossus schmidti Le.sc Pelagic Slope Winter Pelagic 3 Northern 1
Protomyctophum thompsoni Pr.th Pelagic Slope Winter Pelagic 8 Both 1
Bathylagus pacificus Ba.pa Pelagic Slope Winter Pelagic 3 Both 1
Zaprora silenus Za.si Benthic Slope Spring Demersal 4 Northern 1
Bathymaster spp. Ba.sp Benthic Shelf Late spring Demersal 5 Both 2
Hippoglossoides elassodon Hi.el Benthic Slope Early spring Pelagic 4 Northern 2
Glyptocephalus zachirus Gl.za Benthic Slope Spring Pelagic 8 Southern 2
Clupea pallasi Cl.pa Pelagic Nearshore, shelf Late spring Demersal 3 Southern 2
Lumpenella longirostris Lulo Benthic Shelf Spring Demersal 3 Northern 2
Bathyagonus infraspinatus Ba.in Benthic Shelf Spring Demersal 3 Both 2
Sebastes spp. Se.sp Benthic Slope Spring Live bearing 5 Both 3
Isopsetta isolepis Is.is Benthic Nearshore, shelf Early spring Pelagic 2 Southern 3
Lepidopsetta bilineata Le.bi Benthic Shelf Late spring Demersal 4 Southern 3
Cryptacanthodes aleutensis Cr.al Benthic Shelf Spring Demersal 3 Both 3
Poroclinus rothrocki Po.ro Benthic Shelf Spring Demersal 4 Both 3
Radulinus spp. Ra.sp Benthic Shelf Spring Demersal NA Southern 3
Liparis fucensis Li.fu Benthic Shelf Late spring Demersal 2 Both 3
Ruscarius meanyi Ru.me Benthic Shelf Spring Demersal 3 Southern 3
Ophiodon elongatus Op.el Benthic Shelf Late winter Demersal 3 Southern 3
Gadus chalcogrammus Ga.ch Benthic Shelf Early spring Pelagic 4 Both 4
Ammodytes personatus Am.pe Pelagic Nearshore, shelf Late winter Demersal 8 Both 4
Gadus macrocephalus Ga.ma Benthic Shelf Early spring Demersal 3 Northern 4
Lepidopsetta polyxystra Le.po Benthic Shelf Early spring Demersal 5 Northern 4
Lumpenus maculatus Lu.ma Benthic Nearshore Spring Demersal 5 Northern 4
Hexagrammos spp. He.sp Benthic Nearshore Winter Demersal 8 Both 4
Hippoglossus stenolepis Hi.st Benthic Slope Winter Pelagic 5 Northern 4
Pleuronectes quadrituberculatus Plqu Benthic Shelf Late spring Pelagic 2 Northern 4
Mallotus villosus Ma.vi Pelagic Nearshore Summer Demersal 8 Northern 4
Pholis spp. Ph.sp Benthic Nearshore Late winter Demersal 3 Both 4
Myoxocephalus spp. My.sp Benthic Shelf Spring Demersal 5 Northern 4
Podothecus acipenserinus Po.ac Benthic Shelf Spring Demersal 3 Both 4
Triglops spp. Tr.sp Benthic Shelf Spring Demersal 3 Both 4
Lumpenus sagitta Lu.sa Benthic Shelf Late winter Demersal 3 Northern 4

Trend 2 (|loading| < 0.2) that generally increased in abundance after
1996 (Appendices B-C). Of the eight species in that cluster (Fig. 4),
several were either warm-water associated or had more southern ranges
(e.g., Lepidopsetta bilineata, Sebastes spp. (Pacific ocean perch), Ophiodon
elongatus, Table 3) and/or showed increasing trends in adult biomass
over this same period (Pacific ocean perch). Species in cluster 3 were
generally spring spawning with demersal eggs and occupying benthic
shelf habitat as adults. Cluster 4 contained 14 species that loaded

strongly negative on Trend 1, indicating a decrease in abundance after
the early 1990s. These decreasing species included some species that
are cold-water associated or have more northern ranges (e.g. Lepi-
dopsetta polyxystra) and/or species where adult abundance has also
declined in recent years (e.g. pollock). Most species in Cluster 4 occu-
pied shelf or nearshore benthic habitat as adults (Table 3).
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Fig. 3. Common Trends 1 (a) and 2 (b) estimated from Dynamic Factor Analysis on 40 species of ichthyoplankton from 1981 to 2013.
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Fig. 4. Loadings of ichthyoplankton species on DFA Trend 1 (x-axis) and Trend 2 (y-axis). Point shapes indicate clusters identified by hierarchical cluster analysis and
point shading is proportional to the log-scaled mean abundance of each species across all years. Species abbreviations described in Table 3.

3.4. Potential physical and biological drivers of biodiversity and shared
trends

Our analysis of diversity revealed that ichthyoplankton species
richness was negatively correlated with the PDO during one 11-year
window (from 1983 to 1993), but was not correlated with any other
environmental drivers over this same period (Fig. 5). Species richness
was generally positively correlated with increasing spawning stock
biomass of Pacific ocean perch and arrowtooth flounder during
1981-1995.

Shannon diversity was positively correlated with the NPGO during
most of the 1980s and 1990s, but this correlation diminished after the
1988/1989 regime shift (characterized by the NPGO shifting negative).
During the late 1990s to 2013, Shannon diversity was negatively cor-
related with the NPI. Shannon diversity was also negatively correlated
with lagged pollock SSB in most years after 1990, echoing the negative
correlation between the proportion of larval pollock observed in the
spring survey and the Shannon diversity index (Fig. 2). SSB of the other
species either increased or declined during most of the three decades,
which caused inconsistent correlations with the more variable Shannon
diversity time series.

To guide our interpretation of the common trends from DFA, we
examined correlations with environmental indices and SSB indices.
Trend 1 was positively correlated with NPGO from 1981 until 2003
(years indicate edges of moving windows, Fig. 5) with both exhibiting
similar high values in 2001 and low values in the same years in the
1980s and 1990s (Fig. 3 and D2). The correlation between upwelling
and Trend 1 was negative from 1987 to 1997, but switched to positive
in 1996 to 2010. Mean sea level was correlated with Trend 1 from 1994
to 2002. For fish time series, Trend 1 was negatively correlated with
pollock and Pacific cod SSB during 1987 to 2005 and positively cor-
related with Pacific ocean perch during those same years. Trend 2 was
positively correlated with the MEI during 1987 to 1997. Similar to
Trend 1, Trend 2 was negatively correlated with the upwelling anomaly
from 1982 to 1994. For adult fish indices, both Trend 1 and 2 were
correlated with adult pollock, but Trend 2 was negatively correlated in
the first few years of the time-series, picking up an extreme value in
1981. In the 1980s and early 1990s Trend 2 was also negatively
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correlated with adult Pacific ocean perch and arrowtooth flounder but
positively correlated with Pacific cod. We saw no correlations between
Trend 2 and any of the environmental or SSB covariates after 2006.

4, Discussion

Our analysis shows that ecological indicators developed from ich-
thyoplankton surveys are potentially useful for monitoring and asses-
sing the effects of gradual change and abrupt shifts in Large Marine
Ecosystems. The standardized indices of probability of occurrence and
abundance we estimated for the 40 ichthyoplankton species shown here
represent the most precise and least biased estimates of abundance for
spring ichthyoplankton in the GOA over three decades. The biodiversity
indices, synchrony, and DFA trends we developed show evidence of
long-term gradual change in this ecosystem, as well as supporting evi-
dence for abrupt shifts. These patterns were correlated with several
factors: climate shifts that occurred in the North Pacific ecosystem in
1988/1989 and 2007/2008, the influence of pollock - the dominant
larval species - on the co-occurring ichthyoplankton assemblage, and
the assemblage response to environmental forcing events relative to the
abundance of pollock.

Species richness and DFA Trend 1 both showed gradual changes
from 1981 to 2013. These trends may reflect a range shift of southern
latitude species into the western GOA pursuant to overall ocean
warming. Abundances of larval southern rock sole (L. bilineata), Pacific
ocean perch (S. alutus), lingcod (O. elongatus), and starry flounder (P.
stellatus, Appendix B) have increased, consistent with an increase in
bottom temperatures in the GOA (Fig. D2). DFA Trend 1 separated some
warm and cold-water associated species, which could be a leading in-
dicator of replacement of cold water species like northern rock sole (L.
polyxystra) with a warm water congeneric, southern rock sole, over
time. Climate-mediated changes in ichthyoplankton phenology, dis-
tribution, and community structure have been documented in other
Large Marine Ecosystems (e.g., Asch, 2015; Brodeur et al., 2008; Greve
et al., 2005; Walsh et al., 2015) and erratic occurrences of adults of
warm water affinity species have been documented recently in the GOA
(skipjack tuna (Katsuwonus pelamis), ocean sunfish (Mola mola),
thresher shark (Alopias vulpinus; J. Orsi, NOAA AFSC, personal
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Fig. 5. Moving window cross correlations between environmental and spawning stock biomass variables and DFA trends and diversity indices. Each panel shows a
time series of Pearson correlations (black line) with 90 percent confidence intervals that account for autocorrelation (CI, grey-shaded region) with a window length of
11 years (e.g., x-value for 1986 represents years 1981 to 1991). Purple (dark gray in print version) and orange (medium gray in print version) points represent
correlations in which the confidence intervals are greater or less than zero, respectively.

communication).

Our results support the idea that large-scale modes of North Pacific
atmospheric and oceanographic variability are important environ-
mental drivers of the spring ichthyoplankton assemblage. Specifically,
the NPGO appeared to have greater influence than other drivers we
explored. While the PDO has received significant attention for con-
tributing to ecosystem regime shifts in the GOA, we found stronger
evidence of correlations between the spring ichthyoplankton assem-
blage and the NPGO over the PDO from the 1980s to the mid 2000s.
Litzow and Mueter (2014) noted a similar phenomenon during the same
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period, which they attributed to the white noise-dominated signal of
the PDO during those years. Variations in the NPGO have been corre-
lated to production indices, including shifts in nutrient availability and
phytoplankton, zooplankton, and salmon (Oncorhyncus spp., Di
Lorenzo et al., 2008; Ohlberger et al., 2016; Sydeman et al., 2013). Our
results provide further support for the influence of the NPGO on the
North Pacific marine ecosystem from the 1980s to mid-2000s.

Despite the dominance of the NPGO, our results cannot rule out the
PDO as a potential driver of spring ichthyoplankton. Trend 1 was po-
sitively correlated with the PDO in the most recent years of data
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(2003-2013). Further, both DFA trends had strong anomalies in 2007/
2008, the same year as the most recent PDO shift. The absence of sig-
nificant correlations with the PDO in other years may be due to the
ichthyoplankton time series beginning several years after the most in-
fluential PDO regime shift of 1976/1977. It is also possible that more
local indices better reflect ocean conditions most relevant to the spring
ichthyoplankton assemblage, suggested by similar correlation patterns
between Trend 1 and sea level, upwelling, and the PDO beginning in
the mid-1990s. While the dominance of the PDO and NPGO in the
North Pacific has been described elsewhere (Bond et al., 2003; Di
Lorenzo et al., 2008; Litzow and Mueter, 2014), our results demonstrate
that the spring larval fish assemblage may be sensitive to the fluctua-
tions and relative strengths of both and therefore may be useful in-
dicators of the impacts of climate variability on lower trophic dynamics
in the GOA.

Observed positive correlations between Trend 1, upwelling, and
some warm water-affinity species may seem counterintuitive. However,
“upwelling” in the GOA (a downwelling system) is more accurately a
relaxation of the intense downwelling that occurs throughout winter.
The climatological upwelling index in summer is near zero (Ladd et al.,
2005). Weakened summer winds prompt relaxation events and influxes
of cold, deep, slope-origin water during those times are assumed due to
observed increases in salinity at depth (Stabeno et al., 2004). Strong
vertical stratification in late spring/summer can preclude mixing of on-
shelf slope waters to the depths of larval occurrence (typically < 50m
in late spring), and shoaling of the mixed layer depth is observed during
relaxation events. Moreover, relaxation of downwelling winds reduces
the on-shelf flux of cold, basin water in the Ekman surface layer (Ladd
et al.,, 2005), which may lead to warmer water near surface during
upwelling periods. As such, it may not be so unusual to observe positive
relationships between warm-affinity species and downwelling relaxa-
tion events in late spring.

Both DFA trends bear resemblance to trends from a separate ex-
amination of climate-biological interactions using entirely different
biological datasets (Litzow and Mueter, 2014). In that paper, the au-
thors also examined the relationships between biological time-series
data collected from the GOA (large invertebrates, groundfish recruit-
ment, recruitment of small neritic species, salmon, and zooplankton)
and leading climate indices. Their first axis of biological variability was
described by a pattern very similar to our DFA Trend 2, with a strong
decline noted from the 1970s through the 1990s, and a shift to varia-
bility afterward. Inflection points were similar in years 2000-2011,
inclusive of very low values in years 2007-2008. Their second axis of
biological variability was positive from 1980 to 1995, and switched to
negative between 1996 and 2008. This pattern was similar to our DFA
Trend 1. The fact that these two studies, focusing on different species
and life stages, found similar trends in biological responses suggests
that many components of GOA ecosystem may respond similarly to
broad-scale climate forcing, or are in other ways linked.

Despite the contrasting patterns of fluctuations indicated by the two
DFA trends, the synchrony metric we calculated was generally positive
and relatively constant across the three decades. However, we saw
asynchrony and independence during the 1980s and early 1990s when
pollock were removed from the dataset. This coincided with the highest
years of pollock SSB, and many years of high proportional abundance of
larval pollock (Fig. 2, D2). This pattern could be explained by several
possible mechanisms. An abundance of pollock larvae could indicate
ecosystem conditions that are favorable for larval feeding and survival
across species. In this case, numerous pollock indicate a hospitable
environment (less limiting) that supports an array of prey types, ha-
bitat, and refuges. Such an environment could facilitate the expression
of species diversity, leading to greater asynchrony across species. In less
productive years pollock abundances are low, as are abundances of
other species, due to greater ecosystem constraints on resources. Syn-
chrony under constrained conditions might be realized when ecosystem
conditions are insufficient to support diversity. Another possible
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explanation is that the abundance of pollock could modulate the
strength of competition among the other larval fish species. Pollock are
versatile zooplanktivores and numerically dominant in the system.
These qualities may allow them to compete for resources at a level well
above that of other co-occurring species. Pollock ascendancy could in-
crease trophic interactions among other species for remaining re-
sources, leading to dissimilar responses, variable competitive outcomes,
and differential survivorship. Reduced numbers of pollock larvae in the
system could alleviate competition for prey resources and homogenize
responses to environmental fluctuations. How pollock abundance could
intensify trophic interactions is unclear, though it has been previously-
demonstrated that larval pollock grazing can have a measurable effect
on zooplankton standing stock due to the sheer numbers of pollock
larvae present in the system (Duffy-Anderson et al., 2002). A third
possibility is that years of high pollock abundance could trigger pre-
dator-mediated apparent competition, where predators of larval pollock
increase predation on abundant pollock and less abundant other species
simultaneously. Of course, all samples analyzed here were collected
from a relatively small geographic region (Kodiak vicinity of the wes-
tern GOA), so a fourth explanation is that synchrony is reflected as si-
milar responses to local events. Nevertheless, we demonstrated that a
pronounced change in synchrony during the 1990s persisted for over a
decade, suggesting long-term impacts to the plankton community as a
whole.

Overall, our work shows that spring ichthyoplankton in the GOA
integrates signals from the physical environment and adult spawning
stock biomass. Our analyses revealed the composition of the assemblage
is indicative of both gradual change and abrupt regime shifts. The
biodiversity, synchrony, and DFA trends we presented are a first step
towards developing ecosystem indicators from ichthyoplankton time
series for the GOA. Ichthyoplankton are an important component of the
lower trophic levels of the marine food web, as such, they can provide
useful indicators of food availability, and they may also be potential
leading indicators of change in marine ecosystems.
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